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Phase Determination for Pseudo-Symmetric Centrosymmetric Crystals 
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(Received 16 November 1968) 

The Fourier transform of a symmetric atom group that is sampled asymmetrically by the reciprocal 
lattice may be deduced by inspection of the weighted reciprocal lattice. The symmetry of the atom 
group impresses a pseudo-symmetry on the weighted reciprocal lattice. Superposition of the pseudo- 
symmetric parts of the lattice gives an increased sampling of the whole Fourier transform, permits 
recognition of maxima and nodes, and hence provides phase information. 

Introduction 

The observed intensities of the X-ray diffraction max- 
ima produced by a single crystal may be regarded as 
point samples of the continuous Fourier transform of 
the unit-cell contents (Taylor & Lipson, 1958). From 
some crystals, the sample interval provided by the 
reciprocal lattice is small enough to allow the whole 
transform to be deduced, as is essentially done in the 
'heavy atom' method. Sample frequency may be in- 
creased by expansion of the unit cell, as in the case 
of horse haemoglobin (Boyes-Watson, Davidson & 
Perutz, 1947). In general, however, the sampling of the 
transform provided by the reciprocal lattice is too 
sparse to determine detail in the transform by exam- 
ining the observed intensities. 

cell has only centrosymmetry. The weighted reciprocal 
lattice [Fig. l(c)] has approximate mirror symmetry 
along the [45]* direction (shown in the Figure as a 
broken line). Such an approximate mirror will be 
called a pseudo-mirror. Comparison of Fig. l(b) and 
(c) shows that on either side of the pseudo-mirror, 
reciprocal-lattice points give samples of different parts 
of a symmetric transform. The sample frequency pro- 
vided by the reciprocal lattice can therefore be almost 
doubled by superimposing on the lattice its mirror 
image [Fig. l(d)]. The same result is obtained if the 
pseudo-mirror along the [54]* direction is used. There 
is sufficient detail provided by Fig. l(d) to derive the 
full Fourier transform, and in particular the sign of 
the transform at the reciprocal lattice points, if it is 
assumed that there is a sign change across nodes. 

Presence of pseudo-symmetry 

A symmetric molecule or atom group has a symmetric 
Fourier transform. If the repeated atom groups com- 
prising the crystal are not related by symmetry, the 
crystal itself will lack symmetry, and the reciprocal 
lattice will sample the transform asymmetrically. 

Fig. l(a) shows a hypothetical centro- and mirror- 
symmetric group of atoms, so arranged that the unit 

Examples 
(1) CrBr2 

The structure of CrBr2 has been described by Tracy, 
Gregory & Lingafelter (1962), who have listed struc- 
ture factors for the hOl reciprocal lattice plane. The 
weighted hOl reciprocal lattice in Fig.2(a) shows 
pseudo-mirror symmetry about the [103]* direction. 
Superposition of the reciprocal lattice on its mirror 
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image [Fig. 2(b)] shows parallel ridges of high intensity 
separated by regions of low or zero intensity. Positive 
and negative regions of the transform can be assigned 
by inspection and the phases of the reflexions deter- 
mined. Of 61 reflexions used, 51 are assigned the cor- 
rect phase and 10 are near nodes and therefore un- 
certain. (The nodes of the transform can be assigned 
in three other ways, corresponding to the three other 
choices of origin that are symmetry centres in projec- 
tion.) 

(2) Kyanite (A12SiOs) 
The hkO reciprocal lattice plane of kyanite (Burnham, 

1963) shows marked pseudo-symmetry across a line 
normal to a* [Fig. 3(a)]. Superposition of the left and 
right hand sides [Fig. 3(b)] doubles the sample frequency 
for lattice rows with k = 2n + 1. Phase relations can be 

determined along each row for which k is odd by in- 
spection of the intensity distribution. A similar but less 
certain determination can be made along rows with k 
even. The phase relations so deduced agree with the 
published phases (after an origin shift of ½a) for all 
25 reflexions with k odd and for 19 of 24 reflexions 
with k even. As there is no increase in sampling be- 
tween the rows of lattice points, phase relations be- 
tween rows cannot be determined. However, the num- 
ber of unknown phases has been reduced from 50 to 
6 (the number of reciprocal lattice rows considered). 

(3) Naphthalene 
Fig. 4 shows the application of this method of sign 

determination to naphthalene (Knott, 1940). Fig. 4(a) 
shows the weighted reciprocal lattice, and the position 
of the pseudo-mirror. Fig.4(b) shows, on the left, the 
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Fig. 1. (a) Hypothetical mirror symmetric group of 6 atoms. (b) Fourier transform of (a). (c) Weighted reciprocal lattice. (d) 
Superposition of (c) and its mirror image about the broken line. 
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calculated transform, on the right the superimposed 
weighted reciprocal lattices. Deduced nodes are shaded, 
and can be compared with the calculated zero contour 
of the transform. 

T r a n s f o r m  o r i g i n  

The Fourier  t ransform deduced by this method must  
have its origin at one of the centres of  symmetry of 
the unit cell in projection. The part icular  centre found 
will be that  nearest the bulk of the scattering power 

of the molecule or a tom group, for in examining the 
weighted reciprocal lattice one would search for as few 
nodes as possible, and thus select an origin close to 
the more powerful scatterers. 

P h a s e  c h a n g e  a t  n o d e s  

A node in the t ransform need not  delineate a phase 
change, it may be an intensity low flanked by intensity 
highs of the same sign. Some degree of  dist inction be- 
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Fig. 2. CrBr2. (a) Weighted hOl reciprocal lattice (l positive). (b) Superposition of Fig. 2(a) and its mirror image about the pseudo- 
mirror (broken line). Nodes in the transform are shown as continuous lines. 
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Fig. 3. Kyanite. (a) Weighted hkO (k >__ 0) reciprocal lattice, the pseudo-mirror is shown as a broken line. (b) Superposition of Fig. 
3(a) and its mirror image about the pseudo-mirror. (c) (Top) the reciprocal lattice row h30. (Centre) superposition of k30 about 
the pseudo mirror. (Bottom) interpretation of sign regions. (d) Sign interpretation for each row having k constant in the hkO 
reciprocal lattice (stripes positive, dots negative). 
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tween these two kinds of node may be made from the 
rate of intensity change across the node. For a simple 
sinusoidal transform, a node with sign change would be 
narrow, the intensity variation across it rapid [Fig. 3(c)]; 
a node without sign change would be broad, the inten- 
sity variation more uniform (Fig. 5). This distinction 
may be impracticable in a more complicated transform, 
but at least the nodes outline regions of like phase, 
and so reduce the number of unknown phases. 

Translation symmetry 

If the pseudo-symmetry in the reciprocal lattice is in- 
troduced by translation symmetry in the asymmetric 
unit, the magnitude of mirror-related parts of the trans- 
form will be equal along rows of lattice points, but 
their signs will differ if the relevant index is odd. Where 
this index is not integral, the magnitudes of pseudo- 
symmetric parts of the transform are not equal, and 
no information is provided. These effects are shown 
by kyanite: lattice rows with k odd change sign across 
the pseudo-mirror, those with k even are unchanged, 
and no information is provided between lattice rows 
(k not integral) [Fig.3(c) and (d)]. 

If the crystal has true translation symmetry, system- 
atic zeros are introduced into the reciprocal lattice. 
These are not necessarily zeros in the transform of the 
asymmetric unit, and should not be regarded as nodes 
in the composite (Taylor & Lipson, 1958). 

Conclusion 

Recognition of pseudo-symmetry in a reciprocal-lattice 
plane may lead to a great reduction in the number of 
signs of structure factors to be determined. In some 
crystals all phases may be determined. In others suf- 
ficient may be found to make trial and error practicable 
for the remainder. So little time is needed to apply the 
method that nothing is lost if it fails, while a great deal 
may be gained if it succeeds. The method has been 
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Fig. 5. Xanthophyllite. Superposition of the pseudo-mirror 
related 02l and 111 reciprocal lattice rows. All phases positive. 
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Fig.4. Naphthalene. (a) Weighted reciprocal lattice. (b) Left hand side" transform. Right hand side: superimposed weighted 
reciprocal lattice. 
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successfully applied to the determination of the crystal 
structure of brazilianite [NaA13(POa)2(OH)4] (Eggleton 
& Finney, in preparation). 

The author is most grateful to Dr I.M.Threadgold 
and Dr S. W. Bailey for their helpful criticism and sug- 
gestions for improvements to the manuscript. Dr C. W. 
Burnham & Dr J.W.Tracy kindly permitted the use 
of their experimental data. 
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Resolution of a Triple Axis Spectrometer 

BY M. NIELSEN AND H. BJERRUM MOLLER 

A.E.K. Research Establishment, Riso, Denmark 

(Received 30 December 1968) 

A new method for obtaining the resolution function for a triple-axis neutron spectrometer is described, 
involving a combination of direct measurement and analytical calculation. All factors which contribute 
to the finite resolution of the instrument may be taken into account, and Gaussian or experimentally 
determined probability distributions may be used. The application to the study of the dispersion rela- 
tion for excitations in a crystal is outlined. 

1. Introduction 

An important property of a triple-axis spectrometer is 
its resolution function, defined as the probability dis- 
tribution for momentum and energy which a neutron, 
registered in the counter, has transferred to the sample 
under investigation. Several papers have treated the 
resolution of triple-axis spectrometers by various meth- 
ods; analytically (Collins, 1963; Stedman & Nilsson, 
1966; Cooper & Nathans, 1967); graphically (Peck- 
ham, Sanderson & Sharp, 1967; Bergsma & van Dijk, 
1965) or by direct measurements (Moiler, Houmann & 
Mackintosh, 1968; Moiler, 1968). The present paper 
describes the determination of the resolution by a 
combination of measurement and calculation, in which 
no prior knowledge of collimations and mosaic spreads 
is necessary. Non-Gaussian probability distributions 
and curvature of the dispersion relation may be taken 
into account with this method. 

Because of finite collimations in the triple-axis spec- 
trometer and the mosaic spreads of the monochro- 
mator and analyser crystals, there is, for a fixed posi- 
tion of the spectrometer, a spread of the incoming and 
scattered neutron wave vectors k~ and k2 around their 
average values kl0 and k20. As a result, there will be 
a finite probability that the neutron scattering vector 
K = k l - k 2  differs from its average value K0 =kl0-k20, 
and that the energy transfer E = E~ - E2 = h2/2m(k~ - k 2) 
will differ from the average energy transfer E0= 
h2/2m(k2o-k22o). This probability function is called the 
resolution function R(K--~0, E - E 0 ) ;  it is a four-di- 

mensional function. Since the component of K--Ko 
normal to the scattering plane is not correlated with 
the other two components of K-Ko or with E, we need 
only consider the resolution function in the remaining 
three dimensions, that is, energy transfer, E, and mo- 
mentum transfer in the scattering plane. 

This resolution results from four independent con- 
tributions, each of which gives a finite resolution along 
a line in the three-dimensional KE-space. We will de- 
note the vectors along these lines, with length equal 
to the half-width of the distributions, by XI, X2, X3, 
and X4 [see Fig. l(b)]. 

X1 results from the finite collimation of the mono- 
chromator system. With zero mosaic spread of the 
monochromator crystal the probability distribution of 
the monochromator system is PI(Z1/X1) along the X1 
direction. Mosaic spread of the monochromator system 
introduces an independent probability distribution 
P2(z2/X2) along the X2 direction, so that the total res- 
olution function of the monochromator system is 
PM(Z1, )(,2)=P10(1/X1)P2(x2/X2) • X3 and X 4 are the cor- 
responding vectors for the analyser system. 

2. Calculation of resolution 

(1) Gaussian case 
By the use of the Bragg law X1, X2, X3 and X4 are 

easily calculated (Nielsen & Moiler, 1968). Below are 
given the projections of X~ on the E axis, Xte, and on 
the K plane, XiK, and the orientation of XiK in the K 
plane. 


